

Overview

"Make him into a clown"

"Put him in a tuxedo"

Main Results

Object Transformation

• We made the object transformation (scaling, translation, rotation) possible by disentangling the object from the background scene.

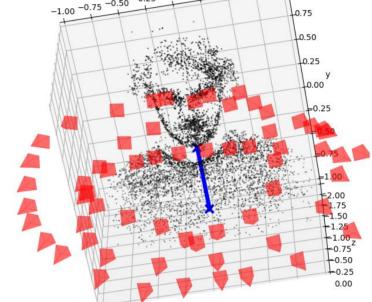
scale factor 0.8 (left) 1.2 (right)

TL;DR Perform 3D object editing selectively by disentangling it from the background scene.

Main Idea

Segmented Object (2D)

[Input] **Original Dataset Image** (2D)


* Multiview Segmentation & Inpainting (SPIn-NeRF)

Inpainted Background Scene (2D)

Original scene Scale up Rotate Translate \rightarrow

• We use COLMAP to acquire the **coordinates** and the **centroid** of the 3D object.

Baseline Comparison

Original

"Turn him into a clown"

Tuxedo"

* Iterative Dataset Update (Instruct-NeRF2NeRF)

SIn NeRF2NeRF Framework

* 3D reconstruction (Depth Supervised NeRF)

Inpainted

Background Scene

(3D)

Edited Object Scene (3D)

[Output] Edited Scene (3D)

Random Background Color

for each view v do $C(v) \leftarrow Random \ color;$ Purpose: Train NeRF scene based on segmented object RGBA images.

Quantitative Results

Scene (face) \ CLIP	Text-Image Similarity		Direction Consistency	
	in2n	sn2n	in2n	sn2n
Clown scene	0.2372	0.2081	0.9071	0.9117
Tuxedo scene	0.0251	0.0481	0.8451	0.8599

Iterative Dataset Update (for RGBA)


for each iteration do


- for each viewpoints v do
 - 1. Alpha blend RGBA image w. black background;
 - 2. Update image using ip2p;
 - 3. Segment the object;

end

end


original

iter=10000

$RGB \leftarrow RGB + C(v) * (1-opacity)$ end


Segmented object (RGBA)

Random background color per view

3D scene representation

3D NeRF Scene Synthesis

- Object and background scene share the same camera parameters.
- Sort the sampled points for the same rays by depth values.

"Turn him into a tolkien elf"

References

[1] Haque et al., Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions , ICCV 2023 (Oral).

[2] Mirzaei et al., SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting with Neural Radiance Fields, CVPR 2023

Acknowledgements

Changmin Lee has implemented the main pipeline. Jiseung Hong and Gyusang Yu revised the code and performed qualitative/quantitative analysis. Data acquisition, methodology discussion and report conduction were equally done.